An Optimal Inequalities Chain for Bivariate Means

نویسندگان

  • ZHEN-HANG YANG
  • YU-MING CHU
چکیده

Abstract. Let p ∈ R , M be a bivariate mean, and Mp be defined by Mp(a,b) = M1/p(ap,bp) (p = 0) and M0(a,b) = limp→0 Mp(a,b) . In this paper, we prove that the sharp inequalities L2(a,b) < P(a,b) < NS1/2(a,b) < He(a,b) < A2/3(a,b) < I(a,b) < Z1/3(a,b) < Y1/2(a,b) hold for all a,b > 0 with a = b , where L(a,b) = (a− b)/(loga − logb) , P(a,b) = (a− b)/[2arcsin((a−b)/(a+b))] , NS(a,b) = (a−b)/[2arcsinh ((a−b)/(a+b))] , He(a,b) = (a+ √ ab+ b)/3 , A(a,b) = (a+ b)/2 , I(a,b) = 1/e(aa/bb)1/(a−b) , Z(a,b) = aa/(a+b)bb/(a+b) and Y (a,b) = I(a,b)e1−ab/L(a,b) are respectively the logarithmic, first Seiffert, Neuman-Sándor, Heronian, arithmetic, identric, power-exponential and exponential-geometric means of a and b .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Some Means Derived from the Schwab–borchardt Mean

Bivariate means defined as the Schwab-Borchardt mean of two bivariate means are investigated. Explicit formulas for those means are obtained. It is demonstrated that they interpolate inequalities connecting the well known bivariate means. Optimal bounds for the means under discussion are also obtained. The bounding quantities are convex combinations of the generating means.

متن کامل

On Two Bivariate Elliptic Means

This paper deals with the inequalities involving the Schwab-Borchardt mean SB and a new mean N introduced recently by this author. In particular optimal bounds, for SB are obtained. Inequalities involving quotients N/SB , for the data satisfying certain monotonicity conditions, are derived. Mathematics subject classification (2010): 26E60, 26D05.

متن کامل

Companion Inequalities for Certain Bivariate Means

Sharp companion inequalities for certain bivariate means are obtained. In particular, companion inequalities for those discovered by Stolarsky and Sándor are established.

متن کامل

Optimal inequalities for the power, harmonic and logarithmic means

For all $a,b>0$, the following two optimal inequalities are presented: $H^{alpha}(a,b)L^{1-alpha}(a,b)geq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ H^{alpha}(a,b)L^{1-alpha}(a,b)leq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. Here, $H(a,b)$, $L(a,b)$, and $M_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...

متن کامل

Inequalities involving inverse circular and inverse hyperbolic functions II

Inequalities connecting inverse circular and inverse hyperbolic functions are obtained. Also, bounds for the inverse hyperbolic sine function are established. Some of the results presented in this paper are derived from the inequalities satisfied by particular bivariate means which belong to the family of the Schwab-Borchardt means. Mathematics subject classification (2010): Primary: 26D07; Sec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015